*‘f SYMPHONY

Message Storage and
APl Format

v1.0.0

“r SYMPHONY

Message Storage and API FOrmat......ocmmmmmmimmemssmssssssssnssnss 3

PROPOSED FORIMAT ..cuuituiienireninesiensrassresiresisssisesrassrsssressssssssssassssssssssssssasssassssssssssssssasssssssassssssasssasssasssns 4
EXAIMPLES «.utuuirenireieesiaeirasiressensiossrassrassrssssestssstsssrsssressssssasssassssssssssssssosssassssssssssssssasssssssasssnssasssassrassens 6
PRESENTATIONIVMIL ..c.ueuiiiniiiiiieiiieiieniietireiresiresieesrassressresssessassrassrassssssssssasssasssssssessssssasssssssssssnssasssasssasssns 7
NAMED CHARACTER REFERENCESeuureuiresiresisesressrassrsssresssssssssrassrsssssssssssssssassssssssssssssasssasssssssnssasssasssasssns 8
IMIESSAGEIMIL .. eeuiieiiieiiinirenireiieiiensresirasiresisesteestassressressssssassrasssassssssssssosssassssssssssssssasssasssssssnssasssasssasssns 9
Message Storage and AP| Format 2 Secure Seamless Communication

v1.0.0 www.symphony.com

Nr SYMPHONY

Message Storage and APl Format

Messages are currently stored in markdown with entities in several additional fields as JSON objects.
There is a need to provide a way to mark up messages to include formatting and custom entities
through the Agent APl and for various reasons we are unhappy with the current storage format.

An HTML style of markup for formatting (bold, italic, numbered and unnumbered lists etc.) seems
appropriate and the Agent APl defines MessageML as a markup to express some of this formatting and a
limited set of entities. Processing XML on the client in JavaScript is unnatural at the very least and this
does not seem like a good format for the storage of embedded entities within messages. An HTML like
approach to markup of formatting does, on the other hand, seem attractive.

In order to ensure that we define good structures for marking up messages both at rest (stored in the
database) and in motion (over the wire on an API) it is necessary to articulate the various actors involved
in the creation and rendering of messages including complex embedded entities.

Actor Description
Message The process which creates a message, which may have an opinion of how the message
& should be presented (e.g. by marking parts of the message as bold or italic or as a paragraph
Author)
break) and which may create embedded entities expressed in a structure it defines.
Entity . .
Renderer A process which knows about one or more entity formats and how to render them.

When a message author expresses formatting for a message this should be done in a semantic rather
than a presentational way. For example, the message author may say that there is a paragraph break in
a message but it is up to the renderer to decide precisely how that should be rendered, e.g. whether the
space between the end of one paragraph and the next should be 2 pixels or 15 pixels. In an ideal world
we would want to mark up messages to indicate emphasis in a presentationally neutral way for example
by referring to a word being "emphasized" as opposed to being "bold" or "italic".

However, the existing GUI message editor provides buttons labelled as bold and italic and users are
familiar with these terms as ways of editing a message. We will therefore treat bold and italic as
semantic formatting, even though these terms express a presentational concept.

In one use case the message creator and the custom entity renderer are developed by the same person,
but this is not necessarily so. For example, Atlassian might define a JIRA webhook and an entity format
to represent a JIRA ticket together with a renderer which knows how to present a JIRA ticket entity as a
pretty table with familiar icons for the current state of the ticket. IBM produce the Jazz range of SDLC
tools which includes its own ticketing system and they might similarly produce an entity format for a
Jazz ticket and a corresponding renderer.

Now it could be that IBM produce a version of their renderer which can display a JIRA ticket in a way
which is convenient for users who are familiar with Jazz but who have to also use JIRA. A message
containing a JIRA entity could be displayed using the JIRA renderer for some users, but by the Jazz
rendered for other users who have that renderer installed.

Message Storage and AP| Format 3 Secure Seamless Communication
v1.0.0 www.symphony.com

Nr SYMPHONY

Alternatively the Jazz webhook might choose to provide a main entity format which expresses all the
detail of a Jazz ticket with a fall back entity in the JIRA entity format so that when the message is viewed
by a user who only has the JIRA renderer installed that they get a better experience than they would
otherwise.

Similar cases exist in the financial industry domain where multiple instrument IDs or ticker symbols may
refer to the same or closely related entities.

Proposed Format

We propose to divide the markup of messages into two areas of concern. PresentationML is a markup
language to express semantic presentation of messages in a domain agnostic way. PresentationML
allows the message author to describe how the message should be presented in a semantic way by
marking up text to be presented as

* Bold

e ltalic

* Paragraph Break

* Line Break

* Numbered List

* Unnumbered list

* Clickable URL

* Simple html style tables.

No specific guarantee will be made about the graphical presentation of these elements which may vary
from device to device and from user to user.

All valid PresentationML will be valid HTML and valid XML without modification. This means that API
consumers will be able to parse PresentationML content with an XML parser and the Ul will be able to
display it as HTML with a CSS style sheet.

MessageML is a superset of PresentationML which also provides an in-line expression of arbitrary
embedded entities. All valid MessageML will be valid XML which means that APl consumers can treat
MessageML content as XML and parse it with an XML parser. Messages transmitted over APIs will be in
MessageML format.

All custom entities will be required to provide a default rendering expressed either as PresentationML or
plain ASCII. In the event that no renderer for a particular custom entity can be found then this default
rendering will be used. A renderer to present PresentationML as plain ASCII will be provided for use by
content export and other consumers requiring plain text.

To enable the Ul to process messages efficiently messages stored in the database will be represented in
StorageML which consists of a single string of PresentationML and a list of entities represented as a
JSON array of entity structures. Each entity structure may be either a single JSON object or an array of

Message Storage and AP| Format 4 Secure Seamless Communication
v1.0.0 www.symphony.com

“r SYMPHONY

objects and a start and end offset in the PresentationML string representing the part of the
PresentationML which should be replaced with the rendered entity. In the case where an array is
provided the elements of this array represent alternate versions for the same entity in descending order
of preference. For example using the example above the first element could be a Jazz format entity
representing a ticket and the second element might be a JIRA format entity representing the main
aspects of the same ticket. In this case the Ul would first try to find a renderer for the Jazz format, if
none is found then it would look for a renderer for the JIRA format and if none is found for that either
then the PresentationML version of the entity would be displayed.

Conversion of messages between MessageML and StorageML is straight forward in Java and can be
done on the server for delivery via the Agent APl and similar use cases. The formats will be defined such
that all valid StorageML can be represented as valid MessageML and vice versa, and conversions defined
such that any message in one format which is converted to the other and then converted back again will
result in the same markup.

Message Storage and AP| Format 5 Secure Seamless Communication
v1.0.0 www.symphony.com

*‘r SYMPHONY

Examples

The following examples are illustrative and do not represent a complete specification of the formats:

APl Format Storage Format
MessageML PresentationML JSON
Hello World Hello World
Plain Bold
Plain Bold <i>Bold+Italic</i> Bold <i>Italic</i> <i>Bold+ltalic</i>
Bold <i>Italic</i>
{

"indexStart": "17",
"indexEnd": "23",

New Task <entity> [{entity d|
<format type="com.atlassian.jira" id="27" name="develop code")) y "type": "com.atlassian.jira",
host="http://symphony.jira.com/getTicket?id=27"/> New Tas ngh: 17
Jira:27 !
Jira:27 " "name": "develop code",
. "host":
</entity> "http://symphony.jira.com/getTicket?id=27"
1
]
}
Message Storage and API Format 6 Secure Seamless Communication

v1.0.0

www.symphony.com

*‘r SYMPHONY

PresentationML

The following tags are defined for PresentationML, tag names are case sensitive:

Tag

Description

Can Be Nested
Within

<PresentationML>document</PresentationML>

A PresentationML document.

<PresentationML>

<p>text</p> Paragraph, contains text to be rendered as a single block of text.
<td><th>
<PresentationML>
Bold, contains text to be rendered in an emphasized way, by <i>
text . . .
presentation as a bold font if possible. <p>
<td><th>
<PresentationML>
. . Italic, contains text to be rendered in a (secondary) emphasized way,
<i>text</i>

by presentation as an italic font if possible.

<p>

<td><th>

List Item 1List Iltem 1

Unordered list, should be rendered as bullet points if possible.

<PresentationML>
<p><i>

<td><th>

Message Storage and API Format

v1.0.0

7 Secure Seamless Communication

www.symphony.com

*‘r SYMPHONY

List Item 1List Iltem 1

Ordered list, should be rendered as a numbered list possible.

<PresentationML>
<p><i>

<td><th>

<table>
<tr><th>Col 1</th><th>Col 2</th></tr> <PresentationML>
Simple table.
<tr><td>Cell 1,1</td><td>Cel 2,1</td></tr> <p>
</table>
<PresentationML>
text<a/>
Hyperlink. <p><i>

<td><th>

<chime/>

An audible chime message. A message MAY contain a single <chime/>
tag, in which case it MUST contain no other content. Conversely a
message which contains any other content MUST NOT contain any
<chime/> tag. This is a limitation of the current implementation
which may or may not change in the future.

<PresentationML>

Named Character References

MessageML special characters can be escaped using HTML named character references. &lIt; > and & should be used to escape < >
and &. The set of supported entities is as defined in http://www.w3.0org/TR/html|5/syntax.html#tnamed-character-references

Message Storage and API Format
v1.0.0

8 Secure Seamless Communication

www.symphony.com

*‘r SYMPHONY

MessageML

The following tags are defined for MessageML, tag names are case sensitive:

Tag

Description

Can Be Nested Within

<MessageML>document</MessageML>

A MessageML document.

<hash tag="label"/>

A hashtag, equivalent to entering #label in the GUI.

<MessageML>

<p><i><td><th>

<cash tag="label"/>

A cashtag, equivalent to entering Slabel in the GUI.

<MessageML>

<p><i><td><th>

Message Storage and API Format
v1.0.0

Secure Seamless Communication
www.symphony.com

*‘r SYMPHONY

<entity>

<format type="type.id1" attri="valuel"
attr2="value2"/>

<format type="type.id2" attr3="value3"
attr4="valued">

<any><tags with="any
attributes"></tags></any>

</format>
PresentationML

</entity>

A custom entity with one or more entity formats and a default
rendering expressed in PresentationML.

Following the opening <entity> tag there MUST be one or more
<format> tags. Each <format> tag MUST have a type attribute which
contains a format identifier in Java package name format. Only the
owner of the equivalent domain in DNS should define that ID.

Each format tag MAY then have any number of additional attributes,
but each attribute name MUST be unique within that tag.

Each format tag MAY contain an arbitrary set of sub-tags, each of
which MAY have zero or more attributes and further sub tags.

Only tags may be contained within a <format> tag, text content
outside of an attribute MUST NOT appear within a <format> tag.

Format tags are listed in descending order of preference, when
displaying an entity the formats will be checked in order and the first
format for which a valid renderer exists will be used and all other
formats will be ignored. In the event that multiple renderers exist for
the same format then the presentation engine will select its preferred
renderer according to its own rules.

Finally after all <format> tags there SHOULD be a sequence of valid
PresentationML tags which represent the default presentation in the
event that no appropriate renderer for any provided format can be
found.

<MessageML>

<p><i><td><th>

Message Storage and API Format
v1.0.0

10 Secure Seamless Communication

www.symphony.com

*‘r SYMPHONY

<errors>
<error>Some error message</error>
<error>Another error message</error>

</errors>

A structure to allow for the reporting of errors in transformations.
These tags should only be produced as a result of generating
MessageML via transformation from another format.

When generating MessageML as part of a read operation, the
generating system MAY include a single <errors> section to indicate
problems which occurred during processing.

When sending MessageML as part of a write request the sending
system SHOULD NOT generate an <errors> section. If such a section is
received by the server fulfilling a write operation then the operation
MUST fail.

<MessageML>

Additionally all PresentationML tags except for <PresentationML></PresentationML> are also valid MessageML tags, and have the same
meaning as defined above. This means that all PresentationML tags can be nested within <MessageML>

Message Storage and API Format
v1.0.0

11 Secure Seamless Communication

www.symphony.com

